JEE Maths Formula Sheet 2025 – Complete List for Main & Advanced

Mathematics is a crucial subject for JEE Main and Advanced. Having all important formulas at your fingertips can save valuable time during the exam. This comprehensive formula sheet covers all topics from Class 11 and 12 that are essential for JEE.

Algebra Formulas

Quadratic Equations

  • Standard form: ax² + bx + c = 0
  • Roots: x = (-b ± √(b² – 4ac)) / 2a
  • Sum of roots (α + β) = -b/a
  • Product of roots (αβ) = c/a
  • Discriminant (D) = b² – 4ac
  • If D > 0: Two distinct real roots
  • If D = 0: Two equal real roots
  • If D < 0: Two complex conjugate roots

Arithmetic Progression (AP)

  • nth term: aₙ = a + (n-1)d
  • Sum of n terms: Sₙ = n/2 [2a + (n-1)d] = n/2 (a + l)
  • Common difference: d = aₙ – aₙ₋₁

Geometric Progression (GP)

  • nth term: aₙ = arⁿ⁻¹
  • Sum of n terms: Sₙ = a(rⁿ – 1)/(r – 1) when r ≠ 1
  • Sum of infinite GP (|r| < 1): S∞ = a/(1 – r)

Binomial Theorem

  • (a + b)ⁿ = Σ ⁿCᵣ aⁿ⁻ʳ bʳ (r = 0 to n)
  • General term: Tᵣ₊₁ = ⁿCᵣ aⁿ⁻ʳ bʳ
  • ⁿCᵣ = n! / (r!(n-r)!)
  • Middle term: T₍ₙ₊₂₎/₂ when n is even

Permutation & Combination

  • ⁿPᵣ = n!/(n-r)!
  • ⁿCᵣ = n!/(r!(n-r)!)
  • ⁿCᵣ = ⁿCₙ₋ᵣ
  • ⁿC₀ + ⁿC₁ + ⁿC₂ + … + ⁿCₙ = 2ⁿ

Trigonometry Formulas

Basic Identities

  • sin²θ + cos²θ = 1
  • 1 + tan²θ = sec²θ
  • 1 + cot²θ = cosec²θ
  • sin(-θ) = -sinθ, cos(-θ) = cosθ

Compound Angle Formulas

  • sin(A ± B) = sinA cosB ± cosA sinB
  • cos(A ± B) = cosA cosB ∓ sinA sinB
  • tan(A ± B) = (tanA ± tanB)/(1 ∓ tanA tanB)

Double Angle Formulas

  • sin2A = 2sinA cosA
  • cos2A = cos²A – sin²A = 2cos²A – 1 = 1 – 2sin²A
  • tan2A = 2tanA/(1 – tan²A)

Half Angle Formulas

  • sin(A/2) = ±√((1 – cosA)/2)
  • cos(A/2) = ±√((1 + cosA)/2)
  • tan(A/2) = (1 – cosA)/sinA = sinA/(1 + cosA)

Product to Sum Formulas

  • 2sinA cosB = sin(A+B) + sin(A-B)
  • 2cosA sinB = sin(A+B) – sin(A-B)
  • 2cosA cosB = cos(A+B) + cos(A-B)
  • 2sinA sinB = cos(A-B) – cos(A+B)

Calculus Formulas

Limits

  • lim(x→0) sinx/x = 1
  • lim(x→0) tanx/x = 1
  • lim(x→0) (eˣ – 1)/x = 1
  • lim(x→0) (aˣ – 1)/x = ln(a)
  • lim(x→0) (1 + x)^(1/x) = e
  • lim(x→∞) (1 + 1/x)ˣ = e

Differentiation

  • d/dx (xⁿ) = nxⁿ⁻¹
  • d/dx (eˣ) = eˣ
  • d/dx (aˣ) = aˣ ln(a)
  • d/dx (ln x) = 1/x
  • d/dx (sin x) = cos x
  • d/dx (cos x) = -sin x
  • d/dx (tan x) = sec²x
  • d/dx (cot x) = -cosec²x
  • d/dx (sec x) = sec x tan x
  • d/dx (cosec x) = -cosec x cot x

Integration

  • ∫xⁿ dx = xⁿ⁺¹/(n+1) + C (n ≠ -1)
  • ∫1/x dx = ln|x| + C
  • ∫eˣ dx = eˣ + C
  • ∫aˣ dx = aˣ/ln(a) + C
  • ∫sin x dx = -cos x + C
  • ∫cos x dx = sin x + C
  • ∫sec²x dx = tan x + C
  • ∫cosec²x dx = -cot x + C
  • ∫sec x tan x dx = sec x + C
  • ∫cosec x cot x dx = -cosec x + C

Integration by Parts

  • ∫u dv = uv – ∫v du
  • Priority order (ILATE): Inverse, Logarithmic, Algebraic, Trigonometric, Exponential

Coordinate Geometry Formulas

Straight Lines

  • Distance between two points: √((x₂-x₁)² + (y₂-y₁)²)
  • Section formula (internal): ((mx₂+nx₁)/(m+n), (my₂+ny₁)/(m+n))
  • Slope: m = (y₂-y₁)/(x₂-x₁) = tanθ
  • Slope-intercept form: y = mx + c
  • Point-slope form: y – y₁ = m(x – x₁)
  • Two-point form: (y-y₁)/(y₂-y₁) = (x-x₁)/(x₂-x₁)
  • Intercept form: x/a + y/b = 1
  • General form: ax + by + c = 0
  • Distance from point to line: |ax₁ + by₁ + c|/√(a² + b²)
  • Angle between lines: tanθ = |(m₁-m₂)/(1+m₁m₂)|

Circle

  • Standard form: (x-h)² + (y-k)² = r²
  • General form: x² + y² + 2gx + 2fy + c = 0
  • Center: (-g, -f), Radius: √(g² + f² – c)
  • Length of tangent from (x₁,y₁): √(x₁² + y₁² + 2gx₁ + 2fy₁ + c)

Parabola

  • Standard form: y² = 4ax (opens right)
  • Vertex: (0, 0), Focus: (a, 0)
  • Directrix: x = -a
  • Length of latus rectum: 4a

Ellipse

  • Standard form: x²/a² + y²/b² = 1 (a > b)
  • Eccentricity: e = √(1 – b²/a²)
  • Foci: (±ae, 0)
  • Length of latus rectum: 2b²/a

Hyperbola

  • Standard form: x²/a² – y²/b² = 1
  • Eccentricity: e = √(1 + b²/a²)
  • Foci: (±ae, 0)
  • Asymptotes: y = ±(b/a)x

Vectors & 3D Geometry

Vector Operations

  • Magnitude: |a⃗| = √(a₁² + a₂² + a₃²)
  • Unit vector: â = a⃗/|a⃗|
  • Dot product: a⃗ · b⃗ = |a⃗||b⃗|cosθ = a₁b₁ + a₂b₂ + a₃b₃
  • Cross product: |a⃗ × b⃗| = |a⃗||b⃗|sinθ
  • Scalar triple product: [a⃗ b⃗ c⃗] = a⃗ · (b⃗ × c⃗)

3D Geometry

  • Distance formula: √((x₂-x₁)² + (y₂-y₁)² + (z₂-z₁)²)
  • Direction ratios: (a, b, c)
  • Direction cosines: l = a/r, m = b/r, n = c/r where r = √(a²+b²+c²)
  • l² + m² + n² = 1
  • Equation of plane: ax + by + cz + d = 0
  • Distance from point to plane: |ax₁ + by₁ + cz₁ + d|/√(a² + b² + c²)

Probability & Statistics

Probability

  • P(A) = n(A)/n(S)
  • P(A∪B) = P(A) + P(B) – P(A∩B)
  • P(A∩B) = P(A) × P(B|A)
  • P(A’) = 1 – P(A)
  • Bayes’ theorem: P(A|B) = P(B|A)P(A)/P(B)

Statistics

  • Mean: x̄ = Σxᵢ/n
  • Variance: σ² = Σ(xᵢ – x̄)²/n
  • Standard deviation: σ = √(variance)
  • Coefficient of variation: CV = (σ/x̄) × 100

Matrices & Determinants

Matrix Operations

  • (AB)ᵀ = BᵀAᵀ
  • (AB)⁻¹ = B⁻¹A⁻¹
  • A⁻¹ = adj(A)/|A|
  • |adj(A)| = |A|ⁿ⁻¹
  • |kA| = kⁿ|A| (for n×n matrix)

Determinant Properties

  • |AB| = |A||B|
  • |Aᵀ| = |A|
  • |A⁻¹| = 1/|A|
  • If any row/column is zero, |A| = 0
  • Interchanging rows/columns changes sign

Tips for Using This Formula Sheet

  1. Regular Revision: Go through these formulas daily during your preparation
  2. Practice Application: Don’t just memorize – solve problems using each formula
  3. Create Flashcards: Make formula flashcards for quick revision
  4. Understand Derivations: Know how formulas are derived for better retention
  5. Group Similar Formulas: Learn related formulas together

Recommended Books for JEE Maths

  • RD Sharma for basics
  • Cengage Mathematics series
  • Arihant’s Skills in Mathematics
  • Previous Year JEE Papers

Note: This formula sheet covers the most important formulas for JEE. Always refer to the official JEE syllabus and practice extensively with previous year papers.

Leave a Reply

Your email address will not be published. Required fields are marked *